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Abstract

The behaviour of plane fountains, resulting from the injection of a denser fluid upwards into a large body of a lighter homogeneous
fluid, is investigated numerically. The transient behaviour of fountains with a uniform inlet velocity, Reynolds number Re = 100, Prandtl
number Pr = 7, and Froude number 0.25 6 Fr 6 10.0 is studied numerically. In the present case, the density variation is as a result of
temperature difference between the fountain and the ambient fluids. Three distinct regimes are identified; steady and symmetric fountains
for 0.25 6 Fr 6 2.0, unsteady fountains with periodic lateral oscillation for 2.25 6 Fr 6 3.0, and unsteady fountains with aperiodic lat-
eral oscillations for Fr P 4.0. It is found empirically that the non-dimensional fountain height, zm, scales differently with Froude number
in each of these regimes; in the steady and symmetric region zm � Fr, in the unsteady and periodic lateral oscillation region zm � Fr1:15 and
in the unsteady and aperiodic lateral oscillation region zm � Fr4=3. The results are compared with previous numerical and experimental
results, where available and are consistent.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

A fountain forms whenever a fluid is injected upwards
into a lighter fluid, or downward into a denser fluid. In
the former case the jet penetrates some distance and falls
back as a plunging plume around the entering fluid.

Fountains are found in many engineering applications:
the heating of a large open structure, such as an aircraft
hanger, by large fan-driven heaters at the ceiling level; cool-
ing of turbine blades; cooling of electronic components; the
mixing of a two-layer water reservoir with propellers; and
the mixing in metallurgical furnaces by gas bubble plumes,
to name just a few. Hence, it is important to understand the
fundamental physics of such flows.
0017-9310/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.
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The behaviour of plane fountains is governed by the
Reynolds, densimetric Froude, and Prandtl numbers,
defined in the case of a uniform inlet velocity as,

Re � V inX in

m
;

Fr � V inffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðqin � q1Þ=q1X in

p ¼ V inffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbðT1 � T inÞX in

p ;

Pr � m
j
;

ð1Þ

where X in is the half-width of the inlet jet. The second
expression of the Froude number applies when the density
difference is due to the difference in temperature of the
fountain and the ambient fluids using the Oberbeck–Bous-
sinesq approximation. It should also be noted that alterna-
tively Richardson number, Ri ¼ 1=Fr2, has been used in the
literature [1–3].

For fountains with a relatively large discharge momen-
tum compared to negative buoyancy flux (Fr� 1) and a
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Nomenclature

C constant of proportionality, defined in (2)
DH hydraulic diameter
Fr densimetric Froude number
f non-dimensional flapping frequency
g acceleration due to gravity
P pressure
p non-dimensional pressure
Pr Prandtl number
Re Reynolds number
Ri Richardson number
T temperature
U horizontal velocity
u non-dimensional horizontal velocity
V vertical velocity
v non-dimensional vertical velocity
X horizontal coordinate

x non-dimensional horizontal coordinate
Y vertical coordinate
y non-dimensional vertical coordinate
zm non-dimensional fountain height

Greek symbols

b coefficient of volumetric expansion
j thermal diffusivity
m kinematic viscosity
q fluid density
s non-dimensional time
h non-dimensional temperature

Subscripts

in variable index at the source
1 variable index of the ambient

4718 N. Srinarayana et al. / International Journal of Heat and Mass Transfer 51 (2008) 4717–4727
large Reynolds number, the flow becomes turbulent close
to the source. Turner [4] in his experiments observed that
the velocity decreased with height and the whole fountain
broadened, came to rest and fell back, until it settled down
to a nearly steady state, with the top at a lower height than
that attained by the first pulse, an upflow in the centre and
a downflow surrounding the upflow. There was exchange
of fluid between the up and the down currents, and the
mixing of the upflow with descending fluid rather than
the stationary environment accounted for the smaller foun-
tain height in the steady state. The experiments revealed
that the fountain height of a turbulent fountain does not
remain constant, but oscillates with time.

Baines et al. [5] obtained an analytical scaling:

zm ¼ CFr4=3; ð2Þ
for a plane turbulent fountain, if the source size is small
compared with the height of the resulting fountain. Baines
et al. [5] conducted a series of experiments on plane foun-
tains and found that C = 0.65. However, Campbell and
Turner [6] obtained C = 1.64–1.97 from their experiments
on plane turbulent fountains. Zhang and Baddour [7] stud-
ied the effect of mass flux, momentum flux and buoyancy
flux on the properties of plane turbulent fountains experi-
mentally by using two different models. The first model
(virtual source model) applied the concept of virtual origin
proposed by Morton [8] and the second model (zero-
entrainment model) ignored the turbulent entrainment.
For Fr < 6.5, their virtual source model gave,

zm ¼ ð2:0� 1:12Fr�2=3ÞFr4=3; ð3Þ
and their zero-entrainment model gave,

zm ¼ 0:71Fr2: ð4Þ
They used scaling equation (2) for large Froude number
experiments (Fr P 10) and obtained C = 2.0.
Goldman and Jaluria [9] carried out an experimental
investigation on plane turbulent fountains by blowing hot
air vertically downward into a chamber and obtained
zm ¼ 5:83Fr0:88, by regression analysis. Recently, Lin and
Armfield [10] investigated the effect of the Reynolds num-
ber on the height of plane fountains. They found that for
Re 6 200 the fountain height was dependent on the Rey-
nolds number with the following scaling:

zm � FrRe�1=2: ð5Þ

Their numerical investigations [11] demonstrate that for
0.2 6 Fr 6 1.0, Re = 200 and Pr = 7 the following relation
can be obtained:

zm ¼ 0:2774þ 1:8696Fr: ð6Þ

A number of investigations have also been undertaken
into axisymmetric (round) fountains. Campbell and Turner
[6] gave,

zm ¼ CFr; ð7Þ

and obtained C = 2.46 [6] from their experiments on turbu-
lent fountains. Turner [4] also found the height of the start-
ing fountain, i.e., the height maximum attained at start-up,
to be a factor of 1.43 greater than the steady value [4]. Mor-
ton [8] used entrainment equations to quantify the increas-
ing radius, the decreasing buoyancy and the velocity of
dense fluid injected upward into a lighter fluid, and ob-
tained C = 2.05 analytically. Morton, however, did not
consider the effect of the downflow and hence his analysis
is only valid before the fountain falls back. Abraham [12]
proposed an analytical solution in which he considered
the decrease of the vertical flux of a tracer near the top
of the fountain, which was not present in the previous
study by Morton [8], where a constant vertical flux was as-
sumed, obtaining C = 2.74. Mizushina et al. [13], experi-
mentally investigated a jet discharged upwards into an
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ambient of higher temperature than that of the jet fluid and
obtained C = 2.35. An experimental investigation was con-
ducted by Zhang and Baddour [14] to study the effect of
source mass flux on the maximum penetration of a vertical
dense jet. Their experiments mainly focused on small Fro-
ude number jets where the source mass flux cannot be ne-
glected and showed that mass flux had no effect on
maximum height at large Froude numbers (Fr > 7.0), but
reduced the height at small Froude numbers (Fr > 7.0).

Lin and Armfield [10] obtained zm � Fr, analytically,
which was validated by a range of numerical simulations
with 0.1 6 Fr 6 1.0, Re = 200 and Pr = 7 [15]. Recently,
there have been many experimental studies on fountains
notably by Friedman and Katz [1], Philippe et al. [16]
and Kaye and Hunt [17], quantifying zm in terms of source
Fr and Friedman [2] and Friedman et al. [3] studied the
oscillations in height and instability thresholds of foun-
tains. As shown above similar scaling relations have been
obtained by various researchers, however there are signifi-
cant variations in the constant of proportionality [18].
Details of other numerical and experimental investigations
on fountains and buoyancy dominated flows, apart from
the works mentioned above, can be found in [19–32].

In this study, we investigate the influence of the Froude
number on plane fountains and obtain empirical relations
between the height and the Froude number for Re = 100,
0.25 6 Fr 6 10.0 and Pr = 7. Additionally, we obtain the
critical Froude number for a flapping instability. The cur-
rent work is a direct extension of the weak fountains
(Fr 6 1.0) investigations of Lin and Armfield [10,11]. Lin
and Armfield assumed the flow to be symmetric about
the fountain source, and used a boundary condition config-
uration that limited the total integration time. In the pres-
ent investigation the viscosities of the fluids are fixed.

The outline of the paper is as follows. In Section 2 we
describe the computational domain and numerical scheme.
In Section 3, the results are presented followed by discus-
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sions in Section 4. Finally, the paper is summarised in Sec-
tion 5.

2. Numerical model

The fluid between horizontal insulated solid walls a dis-
tance H apart is initially still and isothermal at temperature
T1. For t P 0 fluid issues from a slot of width 2Xin in the
floor with a uniform velocity Vin and temperature T in <
T1. The flow is assumed to remain two-dimensional.
Fig. 1 shows the computational domain. The buoyancy is
a result of the temperature difference between the source
and the ambient fluids.

The governing equations are the incompressible
Navier–Stokes equations with the Oberbeck–Boussinesq
approximation. The following equations are written in con-
servative, non-dimensional form in Cartesian coordinates,

ou
ox
þ ov

oy
¼ 0; ð8Þ

ou
os
þ oðuuÞ

ox
þ oðvuÞ

oy
¼ � op

ox
þ 1
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oy2
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þ 1

Fr2
h; ð10Þ

oh
os
þ oðuhÞ

ox
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oy
¼ 1

RePr
o
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ox2
þ o
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� �
: ð11Þ

The following non-dimensionalisation is used:

x ¼ X
X in

; y ¼ Y
X in

; u ¼ U
V in

; v ¼ V
V in

;

s ¼ t
ðX in=V inÞ

; p ¼ P

qV 2
in

; h ¼ T � T1
T1 � T in

: ð12Þ

The initial and boundary conditions are,

u ¼ v ¼ h ¼ 0 when s < 0; ð13Þ
and when s P 0,
open
boundary
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Open boundaries at left and right edges:

ou
ox
¼ 0;

ov
ox
¼ 0;

oh
ox
¼ 0 on x ¼ �L=ð2X inÞ; ð14Þ

isothermal uniform velocity at inlet:

u ¼ 0; v ¼ 1; h ¼ �1 on jxj 6 1; y ¼ 0; ð15Þ

no-slip adiabatic floor:

u ¼ v ¼ 0;
oh
oy
¼ 0 on jxj > 1; y ¼ 0; ð16Þ

no-slip adiabatic ceiling:

u ¼ v ¼ 0;
oh
oy
¼ 0 on y ¼ H=X in; ð17Þ

respectively. The open boundaries at the left and right
edges are based on the assumption that the variation of
flow variables in the boundary normal direction is negligi-
ble. Additionally, it is ensured that the open boundaries are
sufficiently far from the region of interest.

The results were obtained using the open source code
Gerris [33], a quad-tree based adaptive mesh solver which
uses a fractional-step projection method. The advective
terms are discretised using a second-order Godunov type
scheme, the remaining terms use standard second-order
schemes and the equations are solved using a semi-implicit
multi-grid approach. The computational domain is
�100 6 x 6 + 100 and 0 6 y 6 100. The minimum grid
spacing is 4.88 � 10�4 in each direction. The mesh is
dynamically adapted based on the vorticity and the temper-
ature. The adaptive refinement is performed at the frac-
tional time-step. A cell is refined, i.e. divided into four
square sub-cells, whenever
Fig. 2. A typical a
jr � vjDx
max jvj > d; jrhjDx > d; ð18Þ

where Dx is the size of the cell and d is a user-defined
threshold which can be interpreted as the maximum angu-
lar deviation (caused by the local vorticity) of a particle
travelling at a speed maxjvj across the cell. The cells are
also coarsened likewise. The code has been tested for differ-
ent values of d and CFL numbers, more specifically d was
halved each time and was tested for 0.04, 0.02, 0.01 and
0.005 and CFL number was tested for 1.0, 0.75, 0.5 and
0.25. The variation in fountain height from d = 0.01 to
d = 0.005 and from CFL = 0.5 to CFL = 0.25 was found
to be less than 1%, and d = 0.01 and CFL = 0.5 have been
used throughout in the numerical calculations. The time-
step varies dynamically during the iteration process, to
maintain a constant CFL. As an example at full develop-
ment a time-step of 2.15 � 10�4 resulted for Fr = 2.0.
The number of cells also varies with Fr due to the adaptive
nature of the algorithm. A typical mesh, for Fr = 2.0, is
shown in Fig. 2, with 114750 cells. Runs times are of the
order of 27 h on a typical 3.2 GHz Pentium-IV machine
with 1GB RAM.

3. Results

An overview of the temperature fields at different times
for Fr = 2.0 and Fr = 2.25 is shown in Fig. 3. After the
fountain is initiated, it travels upwards until momentum
balances buoyancy, when it comes to rest. The rising fluid
spreads due to its reduced velocity and interaction with the
ambient fluid. The descending fluid then interacts with the
environment and with the upflow, restricting the rise of fur-
dapted mesh.



Fig. 3. Evolution of temperature fields for Fr = 2.0 (left column) and Fr = 2.25 (right column).
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ther fluid. The descending fluid, heavier than the ambient,
moves along the floor as a gravity current. Once full devel-
opment is reached, the fountain is symmetric and steady
Fig. 4. Instantaneous temperature field
for Fr = 2.0. The fountain starts symmetrically for
Fr = 2.25 and the initial fountain structure is similar to that
of Fr = 2.0 except that in case of Fr = 2.25 the fountain has
s after the flow is fully developed.
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a shorter intrusion length for the same non-dimensional
time. This is due to the reduced buoyancy force at higher
Fr. Eventually, the fountain for Fr = 2.25 becomes asym-
metric. Observations of animations for this flow show that
the asymmetry is associated with an unsteady flow,
whereby the fountain flaps from side to side. This flapping
motion is associated with repeated shedding of the top sec-
tion of the fountain to the side, exposing the core which
then increases in height and shifts to the other side. For
Fr = 2.25 this flapping motion is periodic, while for higher
Fr, it is aperiodic, as discussed below.

Fig. 4 shows the instantaneous temperature fields at full
development for different Froude numbers. The fountains
are observed to be symmetric for Fr 6 2.0, but asymmetric
for the higher Froude numbers (Fr P 2.25). In all cases the
asymmetry is associated with unsteady flow in the form of
a periodic or quasi-periodic flapping motion, as described
above, for Fr = 2.25 and 3.0, and a more unstructured
Fig. 5. Evolution of temper
and chaotic motion for Fr 6 4.0. A general increase in
fountain height with Fr can also be observed in these
results. The chaotic behaviour of the higher Froude num-
ber flow is demonstrated in Fig. 5, where the time-evolu-
tion of a typical high Froude number (Fr = 8.0) fountain
is shown. The starting structure shows a flow similar to a
starting jet, with the typical double vortex head entraining
ambient fluid that forms the initial downflow region on
either side of the fountain core. The start-up flow reaches
an initial maximum height, shown in Fig. 5d, with the sub-
sequent reduction in height resulting from the interaction
of the core with the downflow fluid. The fountain becomes
asymmetric at this time, and a strong unsteady chaotic
motion is observed in the subsequent development of the
flow. At this Froude number the fountain undergoes an
aperiodic flapping motion, and this, together with associ-
ated shedding of the fountain top, is seen at the subsequent
times shown in Fig. 5.
ature fields for Fr ¼ 8:0.
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This variation in fountain behaviour with Froude num-
ber is examined further in Fig. 6 which shows the time-evo-
lution of u at x = 0 and y = 2. The horizontal velocity is
almost zero for Fr = 1.0 and 2.0, indicating that the foun-
tain is symmetric about x = 0 and steady. For Fr = 2.25,
the flow is seen to transition from an initially steady, sym-
metric, state to an unsteady state, with a periodic signal.
Similar behaviour is seen for Fr = 2.5 and 2.75 (not shown
here) and a quasi-periodic signal observed for Fr = 3.0 and
an aperiodic, chaotic signal observed for Fr = 4.0. This
behaviour is further demonstrated in Fig. 7 which contains
the non-dimensional frequency spectrum f, inverse of non-
dimensional period of oscillation ¼ 1=Ds, where Ds is the
distance between successive peak of oscillation, of the sig-
nals given above in Fig. 6, obtained using discrete Fourier
transforms. The change in flow behaviour between Fr = 2.0
and 2.25 is again clearly seen, with a negligible spectral
amplitude at Fr = 2.0, and a strong single mode signal at
Fr = 2.25, with f � 0.017, demonstrating the periodic nat-
ure of the flow. Similar single mode behaviour is observed
for Fr ¼ 2:5 and Fr ¼ 2:75 (not shown here), with f ¼
0:015 and f ¼ 0:013, respectively. For Fr ¼ 3:0 the flow
shows a less dominant mode, with f ¼ 0:011, with addi-
tional smaller higher and lower frequency modes, demon-
strating quasi-periodic behaviour. Fr ¼ 4:0 shows a
broad-banded, multi-modal structure, reflecting the aperi-
odic chaotic motion observed for higher Froude numbers.
Time series obtained at other y-locations for x ¼ 0 were
found to have identical frequencies as a result of the homo-
geneous structure of the flapping motion for these Froude
numbers.

Fig. 8 shows time series of v at x ¼ 0 and y = 2. As noted
above for the horizontal velocity, v is approximately steady
for Fr = 1.0 and 2.0. At Fr = 2.25, 2.5 and 3.0 the fully
developed time series shows unsteady periodic and quasi-
periodic signals, while for Fr = 4.0 the fully developed flow
shows aperiodic, chaotic signals, again as observed for the
horizontal velocity at the same location. The frequency
spectra for the v signals, obtained using Fourier Trans-
forms, are shown in Fig. 9 for the indicative Froude num-
bers 1.0, 2.0, 2.25, 3.0 and 4.0. Dominant modes are
observed for Fr = 2.25 and 3.0, with additional higher
and lower modes for Fr = 3.0. Fr = 4.0 again shows a
broad-banded, multi-modal structure. However the fre-
quencies are now f = 0.033, 0.030, 0.026 and 0.022 for the
dominant modes for Fr = 2.25, 2.5, 2.75 and 3.0, almost
twice the frequencies obtained for u, given above. This is
a result of the structure of the flapping motion at these Fro-
ude numbers. The flapping is combined with a bobbing
motion, whereby the fountain height is greatest at the left
and the right extremities of the flapping, and smallest at
the centre. The fountain height thus passes through two
maximum heights and two minimum heights for each full
cycle of side to side flapping, and this is reflected in the ver-
tical velocity time series, with the observed doubling of the
frequency when compared to that of the horizontal velocity,
which reflects the side to side motion only.

The fountain height is determined as the y location at
which the vertical velocity first goes to zero on the centre-
line, x = 0.0. The variation of the fully developed vertical
velocity with y is shown in Fig. 10. For the flows that are
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unsteady at full development, that is those with Fr P 2.25,
the profile shown is obtained by time-averaging over the
period s = 400–1400. The non-dimensional velocity at the
source is 1.0. The velocity then decreases with increasing
y due to a decrease in the momentum flux, eventually
reducing to zero and becoming negative. This negative
flow, above the fountain, reflects the entrainment of lighter,
ambient fluid by the heavier fountain fluid. Further away
from the entrainment region and close to the ceiling (not
shown in Fig. 10), the velocity returns to zero.

The variation of time-averaged non-dimensional foun-
tain height with Fr is shown in Fig. 11, with, as noted
above, the time-averaging carried out for the period
s = 400–1400. It is observed that the fountain heights
may be considered as three distinct groups, each displaying
a different behaviour. For the lower Fr values considered,
that is 0.25 6 Fr 6 2.0, the height increases smoothly with
Froude number, forming the first group. There is then a
discontinuous jump in height from Fr = 2.0 to Fr = 2.25,
followed by the second grouping in which the height
increases smoothly again with Froude number, for
2.25 6 Fr 6 3.0. The third grouping, with Froude numbers
4.0 6 Fr 6 10.0, shows some scatter, with a non-smooth
increase in height with Froude number. These three group-
ings correspond to the three behaviours observed in the
temperature contours, shown in Fig. 4, and in the time ser-
ies and frequency spectra shown in Figs. 6–9. It is of inter-
est to determine if the variation of fountain height can be
represented by simple scaling relations of the type discussed
in Section 1, with the observed groupings described above
suggesting that three separate scalings may be necessary to
obtain a satisfactory fit.
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The linear Froude number scaling suggested by Lin and
Armfield [10,11] for weak fountains was tested for the first
grouping, with regression analysis providing:

zm � 0:64þ 2:22Fr; ð19Þ

with a maximum variation of ±0.026. This relation is plot-
ted for the first grouping in Fig. 11 and is seen to provide a
good fit.

In the second grouping, consisting of those flows that
exhibited periodic and quasi-periodic flapping, the linear
Froude number scaling was found to perform poorly. A
best fit power law, obtained by regression, was found to be

zm � 2:52Fr1:15; ð20Þ
with a maximum variation of ±0.058. This relation is plot-
ted in Fig. 11 for the second grouping and seen to provide a
good fit.

For the high Froude number grouping, representing the
aperiodic, chaotic flows, neither the linear scaling, nor the
Fr1.15 scaling provided a good fit. The Fr4/3 scaling, as pre-
viously suggested by a number of workers and discussed in
Section 1 was tested, with regression analysis giving the
relation:

zm � 3:72þ 1:285Fr4=3; ð21Þ

with a maximum variation of ±0.32. This relation is plot-
ted in Fig. 11 for the third, high Froude number, grouping,
together with the scaling of Campbell and Turner [6], Eq.
(2) with C set to 1.75, the scaling of Goldman and Jaluria
[9], zm ¼ 5:83Fr0:88, the small Fr virtual source scaling of
Zhang and Baddour [7], Eq. (3) and the large Fr scaling
of Zhang and Baddour, Eq. (2) with C set to 2.0.
4. Discussions

The transition from a steady and symmetric fountain to
an unsteady and asymmetric case occurs between Fr = 2.0
and 2.25. This result correlates well with the critical Rich-
ardson number obtained in Friedman et al. [3] for the onset
of instability in fountains, when the Froude number is
expressed in terms of the hydraulic diameter, DH, rather
than the slot half-width for non-circular fountains (for an
infinitely long slot DH ¼ 4X in). Adjusting for the choice
of length scale, the transition Richardson number (based
on DH) in the present study is Ri ¼ 1:0 (Fr ¼ 2:0), consis-
tent with Ri � 1:0 of Friedman et al. [3].

From the present study, the authors note that the fre-
quency of the flapping for the periodic and quasi-periodic
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flow regime was observed to reduce with increasing Froude
number and, hence, to reduce with increasing fountain
height. This is analogous to a pendulum, in which the pen-
dulum period increases with the length of the pendulum.
Also, it is noted that the unsteady fountain behaviour is
strongly dependent on the fountain entrance geometry. In
this case, we have used a fountain entrance that is flush
with the bottom of the domain. Alternatively a re-entrant
nozzle may be used, and preliminary tests have shown that
this will significantly affect the transition behaviour.

The linear Fr scaling of Lin and Armfield [10,11] pro-
vided a good fit for 0.25 6 Fr 6 2.0. However, the varia-
tion in the constants obtained with the present data (Eq.
(19)) and those of Lin and Armfield (Eq. (6)) is a result
of the use of different domain configuration, as men-
tioned earlier in Section 1. It is observed that the Fr4=3

scaling provides a good fit to the numerical data for
4.0 6 Fr 6 10.0. The numerical data obtained here com-
pares reasonably well with the scaling given by Campbell
and Turner [6] and the virtual source model of Zhang
and Baddour [7]. The Goldman and Jaluria [9] scaling
is seen to produce significantly different results, which
may be due to the use of a different method to determine
the fountain height, or due to the geometry of their
experimental rig. The constant of proportionality
(C = 1.285) in the Eq. (21) is slightly outside the range
given by Campbell and Turner [6].

Some preliminary numerical runs were carried out to
determine the Pr dependence of the fountain behaviour
for 7 6 Pr 6 700. The results show negligible variation in
the behaviour of the fountain.

5. Conclusions

The long-term transient behaviour of plane fountains
with uniform inlet velocity has been studied numerically
with Re = 100, 0.25 6 Fr 6 10.0 and Pr = 7 using an adap-
tive mesh solver. Three distinct regimes have been identi-
fied. In the first regime, the fountain is symmetric and
steady with 0.25 6 Fr 6 2.0. Similar flow patterns were
observed by Lin and Armfield [11] with weak laminar plane
fountains (0.2 6 Fr 6 1.0). In the second regime (2.25 6
Fr 6 3.0), the fountain is unsteady and asymmetric, exhib-
iting a periodic side to side flapping motion combined with
bobbing in which the maximum fountain height is reached
twice in each flapping period when the fountain is at the
extremity of the flap. In the third regime (Fr P 4.0), the
fountain is unsteady and aperiodic. The critical Froude
number for transition from steady to unsteady flow there-
fore lies between Fr ¼ 2:0 and 2.25. The transition from
steady to unsteady behaviour, with associated critical Fro-
ude numbers, are consistent with the experimental results
of Friedman et al. [3].

A number of scaling relations have been derived previ-
ously relating the fountain height to the Froude number,
as detailed in the Introduction. In the low Froude number,
steady, symmetric flow regime the linear scaling derived by
Lin and Armfield [11] was found to provide a good fit to
the numerical data, although as noted above the scaling
constants varied from those of Lin and Armfield as a result
of the use of different boundary conditions and integration
times. In the high Froude number, unsteady and aperiodic
regime (Fr P 4.0), the zm � Fr4=3 scaling, suggested origi-
nally by Baines et. al. [5], was found to provide a good
fit. The linear and Fr4=3 power scalings were found to pro-
vide a poor fit to the numerical data in the periodic and
quasi-periodic flapping regime, (2.25 6 Fr 6 3.0). For this
regime the best fit was found to be of the form
zm � Fr1:15, obtained by regression, which is seen to lie
between the linear low Froude number relation that is suit-
able for steady flow, and the Fr4=3 high Froude number
relation, that is suitable for the strongly unsteady, chaotic
flow.
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